Nowoczesne wykrywanie wirusów

wheat-821976__180Jedną z najważniejszych i najistotniejszych zalet mikroskopii elektronowej jako metody badawczej określa sentencja widniejąca na transmisyjnym mikroskopie elektronowym w Departament of Plant Pathology Cornell University, USA – „zobaczyć, to znaczy uwierzyć”. W roku 1939 po raz pierwszy Kausche i wsp. obejrzeli cząstkę wirusa mozaiki tytoniu, od tamtej pory mikroskopia elektronowa (EM) na stałe weszła do zbioru technik badawczych stosowanych w wirusologii roślin. Chociaż w dzisiejszych czasach biologia molekularna dysponuje całym arsenałem specyficznych i bardzo czułych metod wykrywania wirusów, to jednak w wielu przypadkach właśnie techniki EM uważane są za jednoznaczne i ostatecznie dowodzące porażenia roślin przez wirusy, gdyż można te czynniki chorobotwórcze zobaczyć.  Identyfikacja wirusów w mikroskopie elektronowym i ustalenie ich przynależności  taksonomicznej są możliwe dzięki zastosowaniu technik immunoelektronomikroskopowych – IEM, służących do wykrywania reakcji serologicznych na poziomie pojedynczych cząstek wirusa jako antygenu i specyficznych przeciwciał surowicy. Pewną wartość diagnostyczną mają również niektóre charakterystyczne inkluzje wirusowe, które można stwierdzić w porażonych komórkach roślin, a także badania immunocytologiczne.  Techniki EM, w tym i techniki IEM, w badaniach negatywowo kontrastowych preparatów in vitro wirusów roślin mogą być wykorzystywane także do oceny czystości i jakości oczyszczonych preparatów wirusowych, jakości i specyficzności nowo wyprodukowanych surowic, wykrywania obecności mieszanych infekcji wirusami, wykrywania wirusów roślin w pojedynczych wektorach, a także służą do badań nad pokrewieństwem serologicznym wirusów. Techniki IEM są bardzo proste, szybkie i czułe lecz wymagają bardzo drogiej aparatury więc stosowane są dopiero wtedy, gdy inne techniki serologiczne zawodzą i wyniki testów są niepewne.

Antygeny i wirusy

grain-664740__180Efekt reakcji serologicznej między antygenem, czyli wirionami wirusa i specyficznymi przeciwciałami surowicy widoczny jest w mikroskopie elektronowym w postaci zlepionych przeciwciałami cząstek wirusów.  Pewne kłopoty natury technicznej w preparatyce jak: wysychanie mieszaniny serologicznej przed kontrastowaniem, krystaliczne osady po stosowanych buforach i często nieodpowiednie związki kontrastujące, powodowały, że z reguły uzyskiwano obrazy nieczytelne, z uszkodzonymi wirionami. Milne i Luisioni (1975,1977b) zaproponowali wersję tej techniki, wprowadzając etap płukania błonek podtrzymujących dzięki czemu uzyskiwano obrazy  dużo lepszej jakości. Wykorzystywano ją do identyfikacji wirusów, badań nad pokrewieństwem serologicznym oraz była polecana do mianowania surowic. Obecnie technika ta jest rzadko stosowana, gdyż efekty zbrylania cząstek są czasami niespecyficzne, koncentracja cząstek wirusów musi być stosunkowo wysoka i musi być odpowiednia koncentracja surowic.     3) Badania inkluzji wirusowych w ultracienkich skrawkach.   Patogeneza choroby wirusowej może pociągać za sobą  daleko idące zmiany w metabolizmie porażonych komórek roślin. Mogą być one związane z degradacją systemu elementarnych błon komórkowych, zmian strukturalnych organelli itp., co może doprowadzić nawet do śmierci komórki. Występują także zmiany cytologiczne, które mogą być specyficzne i typowe tylko dla rodziny lub rodzaju wirusa i są niezależne od reakcji rośliny żywicielskiej na zakażenie. Lesemann (1991) do takich zmian zalicza nagromadzenie się w komórce różnych produktów genomu wirusa oraz zmiany w systemie błon komórek żywiciela uczestniczących w procesie replikacji, które obserwowane mogą być jedynie krótko po infekcji. Główne produkty genomu wirusa to cząstki wirusów, występujące pojedynczo lub w agregatach oraz różne niestrukturalne białka tworzące duże i charakterystyczne inkluzje wirusowe. Cząstki wirusów, których genomem jest ssRNA, najczęściej występują w cytoplazmie podstawowej, ale także w centralnej wakuoli, plastydach lub mitochondriach. Wirusy o cząstkach izomerycznych najłatwiej rozróżnić, gdy tworzą zwarte masy lub kryształy. Wirusy o cząstkach wydłużonych mogą być obserwowane jako rozproszone masy cząstek, cząstki ułożone szeregowo i przylegające do błon elementarnych (poty-, carlawirusy) lub gdy występują w spłaszczonych, podobnych do płytek agregatach. Agregaty mogą się łączyć tworząc zwarte kryształy (tobamovirusy) lub ciała, inkluzje staśmione (potem-, Carla-, closterowirusy). Cytoplazmatyczne inkluzje wirusowe powstające z kodowanych przez genom wirusa białek niestrukturalnych to głównie ciała X wiązane z infekcją przez wirus mozaiki tytoniu i tobamowirusy oraz cylindryczne inkluzje charakterystyczne dla potywirusów. Funkcja, jaką mają spełniać inkluzje wirusowe, nie jest jeszcze poznana, może ich białko odgrywa jakąś rolę w systemie replikacyjnym RNA lub w transporcie wirusów z komórki do komórki. Edwardson i Christie w 1978 opisali charakterystyczne dla poszczególnych grup wirusów typy inkluzji wirusowych, które mogły być przydatne jako kryteria klasyfikacyjne (pokrewieństwo wirusów) i cechy diagnostyczne grupy.   Mikroskopia elektronowa dominowała w większości prac lat sześćdziesiątych. Lata siedemdziesiąte to dominacja enzymatycznego testu serologicznego ELISA, lata osiemdziesiąte należały do przeciwciał monoklinalnych, zaś w latach dziewięćdziesiątych zeszłego stulecia to fascynacja metodami łańcuchowej reakcji polimerazy – PCR. Zarówno nowe techniki EM, jak i coraz nowocześniejsze mikroskopy mogą odkryć przed nami nie jedną terra incognita mikroświata.

Gleba w gospodarce

farmer-1014731__180Znamy i umiemy tworzyć sztuczne układy, niczym gleby nie przypominające, w których możemy hodować rośliny na skalę gospodarczo użyteczną i osiągać w kulturach bezglebowych, plony nie ustępujące ilościowo i jakościowo plonom uzyskiwanym w rolnictwie i ogrodnictwie konwencjonalnym. Tą cechą, która w sposób istotny wyróżnia glebę od innych tworów geologicznych i wszelkich sztucznych układów dających plony jest jej zdolność do samoreprodukcji, do spontanicznego odnawiania zasobów substancji koniecznych dla wzrostu i rozwoju roślin oraz innych organizmów glebę zasiedlających. Gleba jest tworem żywym, metabolizującym. Można w niej znaleźć pewne analogie do organizmu. W glebie toczą się złożone przemiany chemiczne i biochemiczne nadające glebie jej przyrodnicze właściwości, czyniące z niej naturalne siedlisko życia roślin, umożliwiające stałą wegetację. Aktywność biologiczna, cecha wyróżniająca glebę od innych tworów geologicznych jest sumą, procesów chemicznych i biologicznych w niej zachodzących. Porównanie gleby do organizmu nie ograniczają się tylko do istniejącego w glebie zjawiska przemiany materii, ale wyrażają się również obecnością określonych powiązań i zależności pomiędzy wielokierunkowymi drogami metabolizmu glebowego. Metabolizm gleby jest oczywiście niemal wyłącznie metabolizmem zawartych w niej organizmów żywych (korzeni roślin, fauny i drobnoustrojów). Gleba zawiera pewien zasób wolnych enzymów. Są one wprawdzie pochodzenia biologicznego przyżyciowo wydalane przez komórki organizmów: egzoenzymy i uwalniane w procesach litycznych: endoenzymy ale działają już niezależnie od komórek macierzystych i aktywność ich regulowana jest stosunkami panującymi w glebie a nie w komórkach. Enzymy pozakomórkowe wydzielane z żywych bądź zamierających komórek mogą być związane z fragmentami komórek ściany i błon komórkowych, fragmentami plazmy lub organelli komórkowych, mogą być akumulowane w glebie, gdzie tworzą labilne połączenia enzym-substrat, są adsorbowane na powierzchni cząstek mineralnych, lub wchodzą w związki kompleksowe z koloidami substancji humusowych, a nawet częściowo i krótkoterminowo w roztworze glebowym.